3.145 \(\int \frac{(a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=149 \[ -\frac{a^2 B \cos (e+f x) \log (1-\sin (e+f x))}{c^2 f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}}+\frac{(A+B) \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{4 f (c-c \sin (e+f x))^{5/2}}-\frac{a B \cos (e+f x) \sqrt{a \sin (e+f x)+a}}{c f (c-c \sin (e+f x))^{3/2}} \]

[Out]

((A + B)*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2))/(4*f*(c - c*Sin[e + f*x])^(5/2)) - (a*B*Cos[e + f*x]*Sqrt[a
+ a*Sin[e + f*x]])/(c*f*(c - c*Sin[e + f*x])^(3/2)) - (a^2*B*Cos[e + f*x]*Log[1 - Sin[e + f*x]])/(c^2*f*Sqrt[a
 + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.387005, antiderivative size = 149, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {2972, 2739, 2737, 2667, 31} \[ -\frac{a^2 B \cos (e+f x) \log (1-\sin (e+f x))}{c^2 f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}}+\frac{(A+B) \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{4 f (c-c \sin (e+f x))^{5/2}}-\frac{a B \cos (e+f x) \sqrt{a \sin (e+f x)+a}}{c f (c-c \sin (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Sin[e + f*x])^(3/2)*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x])^(5/2),x]

[Out]

((A + B)*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2))/(4*f*(c - c*Sin[e + f*x])^(5/2)) - (a*B*Cos[e + f*x]*Sqrt[a
+ a*Sin[e + f*x]])/(c*f*(c - c*Sin[e + f*x])^(3/2)) - (a^2*B*Cos[e + f*x]*Log[1 - Sin[e + f*x]])/(c^2*f*Sqrt[a
 + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 2972

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] + Dist[(a*B*(m - n) + A*b*(m + n + 1))/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2
 - b^2, 0] && (LtQ[m, -2^(-1)] || (ILtQ[m + n, 0] &&  !SumSimplerQ[n, 1])) && NeQ[2*m + 1, 0]

Rule 2739

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-2*b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)), x] - Dist[(b*(2*m - 1)
)/(d*(2*n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e
, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] && LtQ[n, -1] &&  !(ILtQ[m + n, 0] && G
tQ[2*m + n + 1, 0])

Rule 2737

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(
a*c*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx &=\frac{(A+B) \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{4 f (c-c \sin (e+f x))^{5/2}}-\frac{B \int \frac{(a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{3/2}} \, dx}{c}\\ &=\frac{(A+B) \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{4 f (c-c \sin (e+f x))^{5/2}}-\frac{a B \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{c f (c-c \sin (e+f x))^{3/2}}+\frac{(a B) \int \frac{\sqrt{a+a \sin (e+f x)}}{\sqrt{c-c \sin (e+f x)}} \, dx}{c^2}\\ &=\frac{(A+B) \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{4 f (c-c \sin (e+f x))^{5/2}}-\frac{a B \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{c f (c-c \sin (e+f x))^{3/2}}+\frac{\left (a^2 B \cos (e+f x)\right ) \int \frac{\cos (e+f x)}{c-c \sin (e+f x)} \, dx}{c \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=\frac{(A+B) \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{4 f (c-c \sin (e+f x))^{5/2}}-\frac{a B \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{c f (c-c \sin (e+f x))^{3/2}}-\frac{\left (a^2 B \cos (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{c+x} \, dx,x,-c \sin (e+f x)\right )}{c^2 f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=\frac{(A+B) \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{4 f (c-c \sin (e+f x))^{5/2}}-\frac{a B \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{c f (c-c \sin (e+f x))^{3/2}}-\frac{a^2 B \cos (e+f x) \log (1-\sin (e+f x))}{c^2 f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.978476, size = 198, normalized size = 1.33 \[ \frac{a \sqrt{a (\sin (e+f x)+1)} \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right ) \left (\sin (e+f x) \left (A+4 B \log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )+3 B\right )+B \cos (2 (e+f x)) \log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )-B \left (3 \log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )+2\right )\right )}{c^2 f (\sin (e+f x)-1)^2 \sqrt{c-c \sin (e+f x)} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Sin[e + f*x])^(3/2)*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x])^(5/2),x]

[Out]

(a*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*Sqrt[a*(1 + Sin[e + f*x])]*(B*Cos[2*(e + f*x)]*Log[Cos[(e + f*x)/2] -
 Sin[(e + f*x)/2]] - B*(2 + 3*Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]]) + (A + 3*B + 4*B*Log[Cos[(e + f*x)/2]
- Sin[(e + f*x)/2]])*Sin[e + f*x]))/(c^2*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 + Sin[e + f*x])^2*Sqrt[c
- c*Sin[e + f*x]])

________________________________________________________________________________________

Maple [B]  time = 0.28, size = 594, normalized size = 4. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x)

[Out]

1/f*(-A+3*B+A*sin(f*x+e)+A*cos(f*x+e)^2-3*B*cos(f*x+e)^2*ln(2/(cos(f*x+e)+1))+2*B*cos(f*x+e)^2*sin(f*x+e)+6*B*
cos(f*x+e)^2*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+2*B*cos(f*x+e)^3-2*B*cos(f*x+e)+2*B*ln(2/(cos(f*x+e)+1
))*sin(f*x+e)*cos(f*x+e)-4*B*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))*sin(f*x+e)*cos(f*x+e)+B*sin(f*x+e)*cos
(f*x+e)-2*B*cos(f*x+e)*ln(2/(cos(f*x+e)+1))+4*B*cos(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))-4*B*sin(
f*x+e)*ln(2/(cos(f*x+e)+1))+8*B*sin(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))-A*sin(f*x+e)*cos(f*x+e)-
3*B*cos(f*x+e)^2+4*B*ln(2/(cos(f*x+e)+1))-8*B*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))-2*B*cos(f*x+e)^2*sin(
f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+B*cos(f*x+e)^2*sin(f*x+e)*ln(2/(cos(f*x+e)+1))+B*cos(f*x+e)^
3*ln(2/(cos(f*x+e)+1))-2*B*cos(f*x+e)^3*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))-3*B*sin(f*x+e))*(a*(1+sin(f
*x+e)))^(3/2)/(sin(f*x+e)*cos(f*x+e)+cos(f*x+e)^2-2*sin(f*x+e)+cos(f*x+e)-2)/(-c*(-1+sin(f*x+e)))^(5/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sin \left (f x + e\right ) + A\right )}{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{3}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^(3/2)/(-c*sin(f*x + e) + c)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B a \cos \left (f x + e\right )^{2} -{\left (A + B\right )} a \sin \left (f x + e\right ) -{\left (A + B\right )} a\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c}}{3 \, c^{3} \cos \left (f x + e\right )^{2} - 4 \, c^{3} -{\left (c^{3} \cos \left (f x + e\right )^{2} - 4 \, c^{3}\right )} \sin \left (f x + e\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

integral((B*a*cos(f*x + e)^2 - (A + B)*a*sin(f*x + e) - (A + B)*a)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x +
e) + c)/(3*c^3*cos(f*x + e)^2 - 4*c^3 - (c^3*cos(f*x + e)^2 - 4*c^3)*sin(f*x + e)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**(3/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sin \left (f x + e\right ) + A\right )}{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{3}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x, algorithm="giac")

[Out]

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^(3/2)/(-c*sin(f*x + e) + c)^(5/2), x)